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44. Cauchy-Goursat theorem 
Cauchy theorem:  Let C be a simple closed contour described in the 

positive sense.  Let f be analytic at each point interior to and on C. Let f 1

be continuous in the closed region R consisting of all points interior to be continuous in the closed region R consisting of all points interior to 

and on the simple closed contour C.  then  
c

dzzf .0)(  

 OR  
If a function f is analytic and f 1 is continuous at all points interior to and 

on a simple closed contour C, then  
c

dzzf .0)(  
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Proof:   
 We let C denote a simple closed contour z = z(t), )( bta   described 

in the positive sense, and f is analytic and f1 is continuous at all points 

interior to and on C. 

Now,  c

b

a

dttztzfdzzf .)()]([)( 1  ……………..(1) 

b

i.e.,   
c

b

a

dttiytxtytxivtytxudzzf )()(()])(),([)](),([()( 11  

b b

i.e.    
c

b

a

b

a

dtuyvxidtvyuxdzzf .)()()( 1111 …..(2) 
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i.e., )()()(   
c c c

udyvdxivdyudxdzzf …………(3) 

Formula from calculus: Formula from calculus: 
Suppose that two real-valued functions P(x, y) and Q(x, y), together with 

their first-order partial derivatives, are continuous throughout the closed 

region R consisting of all points interior to and on the simple closed region R consisting of all points interior to and on the simple closed 

contour C.  According to Green’s theorem,   
c R

yx dAPQQdyPdx )(   
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Now f is analytic in R  f is continuous in R 

Then the function u and v are also continuous in R. Then the function u and v are also continuous in R. 

If f1 is continuous in R then so are the first-order partial derivatives of u 

and v. and v. 

Then from Green’s theorem we can rewrite (3) as 

    yxyx dAvuidAuvdzzf )()()(    
c R R

yxyx

i.e.,  
c

dzzf 0)(  (since ux = vy , uy = -vx) 
c
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Remark:  Suppose C is taken in the clockwise direction then 

 



c c

dzzfdzzf 0)()(  

Example: If C is any simple closed contour, in either direction, then Example: If C is any simple closed contour, in either direction, then 

0)exp( 3 
c

dzz .We know that f(z) = exp(z3) is analytic everywhere and its 

derivative )exp(3)( 321 zzzf  is continuous everywhere.  

Hence, 0)exp( 3  dzz . 
c
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45. Proof of Cauchy-Goursat theorem 45. Proof of Cauchy-Goursat theorem 

Statemen:(Cauchy-Goursat)  If a function f is analytic at all points 

interior to and on a simple closed contour C, then  dzzf 0)(  interior to and on a simple closed contour C, then  
c

dzzf 0)(  

Proof of the theorem 
 We first prove the following Lemma.  We first prove the following Lemma. 
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Lemma:  Let f be analytic throughout a closed region R consisting of the 

points interior to a positively oriented simple closed contour C togetherpoints interior to a positively oriented simple closed contour C together

with the points on C itself. 

For any positive number , the region R can be covered with a finite For any positive number , the region R can be covered with a finite 

number of squares and partial squares, indexed by j = 1, 2, ..., n, such 

that in each one there is a fixed point zj for which the inequality that in each one there is a fixed point zj for which the inequality 

)()(
)()( 1

jj
j

j zzzf
zz
zfzf





 ……..(1) 

is satisfied by all other points in that square or partial square. 
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Proof of the Lemma:  We start by forming subsets of the region R which 

consists of the points on a positively oriented simple closed contour C

together with points interior to C. together with points interior to C. 

 We draw equally spaced lines parallel to the real and imaginary 

axes such that the distance between adjacent vertical lines is the same 

as that between adjacent horizontal lines. 

 We thus form a finite number of closed square sub regions, where 

each point of R lies in at least one square sub regions (square), where each point of R lies in at least one square sub regions (square), where 

each point of R lies in at least one such square or partial Square (if a

particular square contains points that are not in R, we remove those 

points and call what remains a partial square) and each square or partial

square contains points of R. 
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We thus cover the region R with a finite number of squares and partial 

squares. squares. 
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We suppose that the needed points zj do not exist after subdividing 
one of the original sub regions a finite number of times and reach 
a contradiction.  We let 0 denote that sub regions if it is a square; if it 

is a partial squares, we let 0 denote the entire square of which it is a 

part.  After we subdivide  , at least one of the four smaller squares, part.  After we subdivide 0 , at least one of the four smaller squares, 

denoted by 1 , must contain points of R but no appropriate point zj.  We 

then subdivide 1  and continue in this manner.  It may be that after a then subdivide 1  and continue in this manner.  It may be that after a 

square 1k  (k = 1, 2, …, ) has been subdivided, more than one of the 

four smaller squares constructed from it can be chosen.  To make a 

specific choice, we take k to be the one lowest and then furthest to the 

left.   
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We construct the nested infinite sequence ...,,,...,,,  (2), of We construct the nested infinite sequence ...,,,...,,, 1210 kk   (2), of 

squares such that there is a point z0 common to each k ; also, each of 

these squares contains points of R other than possibly z0.Recall how the 

sizes of the squares in the sequence are decreasing, and note that any 

 neighborhood  0zz of z0 contains such squares when their 

diagonals have lengths less than . diagonals have lengths less than . 
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Every   neighborhood  0zz therefore contains points of R distinct 

form z0, and this means that z0 is an accumulation point of R.  Since the 

region is a closed set, it follows, that z0 is a point in R. 

 Given: f is analytic in R  it is analytic at z0.  

So f1(z ) exists. So f1(z0) exists. 

i.e., for each   0,0 zz such that 

 )()()(

0
1

0

0 zf
zz
zfzf  

 0zz
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But the neighborhood  0zz contains a square k  when the integer k 

is large enough that the length of a diagonal of that square is less 

then.Consequently, z0 serves at the point zj in inequality (1) for the sub then.Consequently, z0 serves at the point zj in inequality (1) for the sub 

region consisting of the square k or a part of k . Contrary to the way in 

which the sequence (2) was formed, then, it is not necessary to 

subdivide k . We then arrive at a contradiction, and the proof of the k

lemma is complete. 
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Proof of Cauchy-Goursat theorem: 

To Prove:  
c

dzzf 0)(  …(3)  Where f is analytic through a region R 
c

consisting of a positively oriented simple closed contour C and points 

interior to it. 

 Given 0 , we consider the covering of R into a finite number of  Given 0 , we consider the covering of R into a finite number of 

squares and partial squares.  Let us define on the jth square or partial 

square the following function, where zj is the fixed point in that sub 

region for which inequality (1) holds: region for which inequality (1) holds: 
















j

jj
j

j

j

zzwhen

zzwhenzf
zz
zfzf

z
0

)(
)()(

)(
1

 …….(4) 
  jzzwhen0
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From (1),  )(zj …..(5) at all points z in the sub region of which )(zj  is 

defined.  Since f(z) is continuous, )(zj  is continuous throughout the sub 

region and 0)()()( 11 
 jjj

j

zfzfz
zz

Lim
  

Next , let Cj  (j = 1, 2, …, n) denote the positively oriented boundaries of Next , let Cj  (j = 1, 2, …, n) denote the positively oriented boundaries of 

the of the above squares or partial squares covering R.  Let z be a point 

on any particular Cj. Then from (4),  

)()()()()()( 1 zzzzfzzzfzf jjjjj   )()()()()()( zzzzfzzzfzf jjjjj   

i.e., )()()()()()( 1 zzzzfzzzfzf jjjjj   

i.e., )()()()()()( 11 zzzzzfzfzzfzf jjjjjj   
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i.e.,     
j j jj c c c

jjj
c

jjj dzzzzdzzzfdzzfzzfdzzf )()()()()()( 11  ……(6) 
j j jj c c cc

i.e.,   












j jc c
jj dzzzzdzzf )()()(    ( j =1, 2, …, n) ……..(7) 

j jc c

 since  
jc

dz 0  and  
jc

dzz 0 as the functions 1 and z possess anti -

derivatives everywhere in the finite plane.  

Then  
 


n

j c

n

j c
jj dzzzzdzzf

1 1

)()()(    
 j c j cj j1 1
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
n

i.e., 



n

j c
jj

c j

dzzzzdzzf
1

)()()(   

since the two integrals along the common boundary of every pair of 

adjacent sub regions cancel each other, the integral being taken in one 

sense along that line segment in one sub region and in the opposite 

sense in the other (Fig). Only the integrals along the arcs that arc parts sense in the other (Fig). Only the integrals along the arcs that arc parts 

of C remain.  
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So 



n

j c
jj

c j

dzzzzdzzf
1

)()()(  …..(8) 

To find an upper bound for each absolute value on the right in (8). To find an upper bound for each absolute value on the right in (8). 

 Note that each Cj coincides either entirely or partially with the 

boundary of a square.  In either case, we let sj denote the length of side of boundary of a square.  In either case, we let sj denote the length of side of 

the square.  In the jth integral, both z and zj lie in Cj and 

so  jjj szzz 2)()(  …..(9) so  jjj szzz 2)()(  …..(9) 

20



Note that the length of Cj is 4 sj if Cj is the boundary of a square.  Let Aj 

be the area of the square.  So  Assdzzzz 2442)()(   ….(10) be the area of the square.  So  jjj
c

jj Assdzzzz
j

2442)()(   ….(10) 

 If Cj is the boundary of a partial square, its length does not exceed 

4 sj + Lj Where Lj is the length of that part of Cj which is also a part of C,  4 sj + Lj Where Lj is the length of that part of Cj which is also a part of C,  

Again letting Aj denote the area of the full square,  

we find that  

)4(2)()( jjj
c

jj Lssdzzzz
j

   
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i.e.,  jj
c

jj LSAdzzzz
j

224)()(  …….(11) 

 where S is the length of a side of some square that encloses the 

entire contour C as well as all of the squares originally used in covering 

R.  Note that the sum of all the sA ,  does not exceed S2. R.  Note that the sum of all the sAj  does not exceed S2. 

 If L denotes the length of C, it follows from (8), (10), and (11) that  

)224()( 2 LSSdzzf   )224()( 2 LSSdzzf
c

  

Since 0  is arbitrary,  (we can choose it so that the right hand side of 

this last inequality is as small as we please.  The left-hand side, which is this last inequality is as small as we please.  The left-hand side, which is 

independent of   , must therefore be equal to; hence) 0)( 
c

dzzf . 
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